67,313 research outputs found

    Report of the Terrestrial Bodies Science Working Group. Volume 6: The asteroids

    Get PDF
    Earth-based astronomical observations and laboratory analysis of meteorites provide the only scientific data available on asteroids. These data are summarized and subjects for future investigations are explored. The measurements required for potential missions are discussed and concepts for a multi-asteroid rendezvous mission in the mid-1980's are outlined

    DYNAMICS AND PRICE VOLATILITY IN FARM-RETAIL LIVESTOCK PRICE RELATIONSHIPS

    Get PDF
    This study uses an error correction model (ECM) to investigate dynamics in farm-retail price relationships. The ECM is a more general method of incorporating dynamics and the long-run, steady-state relationships between farm and retail prices than has been used to data. Monthly data for beef and pork are used to test the time-series properties for the ECM specification. The model is extended to study price volatility through the generalized autoregressive conditional heteroskedasticity (GARCH) process. Accommodation of the GARCH process provides a useful way of analyzing both mean and variance effects of policy or market structure changes.Demand and Price Analysis, Livestock Production/Industries,

    Coolant passage heat transfer with rotation

    Get PDF
    In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades

    Tip-gating Effect in Scanning Impedance Microscopy of Nanoelectronic Devices

    Full text link
    Electronic transport in semiconducting single-wall carbon nanotubes is studied by combined scanning gate microscopy and scanning impedance microscopy (SIM). Depending on the probe potential, SIM can be performed in both invasive and non-invasive mode. High-resolution imaging of the defects is achieved when the probe acts as a local gate and simultaneously an electrostatic probe of local potential. A class of weak defects becomes observable even if they are located in the vicinity of strong defects. The imaging mechanism of tip-gating scanning impedance microscopy is discussed.Comment: 11 pages, 3 figures, to be published in Appl. Phys. Let

    Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies

    Full text link
    Scanning Surface Potential Microscopy (SSPM) is one of the most widely used techniques for the characterization of electrical properties at small dimensions. Applicability of SSPM and related electrostatic scanning probe microscopies for imaging of potential distributions in active micro- and nanoelectronic devices requires quantitative knowledge of tip surface contrast transfer. Here we demonstrate the utility of carbon-nanotube-based circuits to characterize geometric properties of the tip in the electrostatic scanning probe microscopies (SPM). Based on experimental observations, an analytical form for the differential tip-surface capacitance is obtained.Comment: 14 pages, 4 figure

    User's manual for rocket combustor interactive design (ROCCID) and analysis computer program. Volume 2: Appendixes A-K

    Get PDF
    The appendices A-K to the user's manual for the rocket combustor interactive design (ROCCID) computer program are presented. This includes installation instructions, flow charts, subroutine model documentation, and sample output files. The ROCCID program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can be easily added. The analysis models in ROCCID can account for the influences of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure
    corecore